
 - 1 - 

 

A COMPARISON OF THREE DATA-DRIVEN 

TECHNIQUES FOR PROGNOSTICS 

 

 

Kai Goebel
*
, Bhaskar Saha

+
, Abhinav Saxena

#
 

*NASA Ames Research Center 
+
MCT, NASA Ames Research Center 

#
RIACS, NASA Ames Research Center 

MS 269-4, Moffett Field, CA 94035 

kai.goebel@nasa.gov, bsaha@email.arc.nasa.gov, asaxena@riacs.edu 

  

 

Abstract: 

In situations where the cost/benefit analysis of using physics-based damage propagation 

algorithms is not favorable and when sufficient test data are available that map out the 

damage space, one can employ data-driven approaches. In this investigation, we evaluate 

different algorithms for their suitability in those circumstances. We are interested in 

assessing the trade-off that arises from the ability to support uncertainty management, 

and the accuracy of the predictions. We compare here a Relevance Vector Machine 

(RVM), Gaussian Process Regression (GPR), and a Neural Network-based approach and 

employ them on relatively sparse training sets with very high noise content. Results show 

that while all methods can provide remaining life estimates although different damage 

estimates of the data (diagnostic output) changes the outcome considerably. In addition, 

we found that there is a need for performance metrics that provide a comprehensive and 

objective assessment of prognostics algorithm performance. 
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I. INTRODUCTION 

There are different strategies for remaining useful life (RUL) estimation using data-

driven methods. One strategy directly estimates RUL by applying a multivariate pattern 

matching process from the data to the remaining life. Another approach is to estimate 

RUL indirectly by first estimating damage, then performing a suitable extrapolation to 

the damage progression and calculate RUL from the intersection of the extrapolated 

damage and the failure criterion. The latter approach is more closely aligned with 

engineering reasoning but it requires the definition of both damage and a failure criterion 

which is often times very difficult to establish. Data-driven approaches rely on the 

availability of run-to-failure data. This kind of data is hard to come by and there are very 

few public repositories [1] available that allow a comparative analysis of different 
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prognostic algorithms. In this paper we attempt to compare three different algorithms on 

the same data set and the emphasis has been laid on their predictive capabilities, which in 

turn is a function of their capability to learn and generalize from the training data. 

 

II. DATA-DRIVEN TECHNIQUES FOR PROGNOSTICS 

Common to data-driven approaches is the modeling of desired system output (but not 

necessarily of the mechanics of the system) using historical data. Such approaches 

encompass “conventional” numerical algorithms, like linear regression or Kalman filters, 

as well algorithms that are commonly found in the machine learning and data mining 

communities. The latter algorithms include neural networks, decision trees, and Support 

Vector Machines. We enumerate below the most popular methods for data-driven 

techniques employed for prognostics. The review given in [2] provides an extensive 

overview over data-driven methods in the context of computational intelligence.  

 

One of the most popular data-driven approaches to prognostics is artificial neural 

networks ([3]-[12]). An artificial neural network is a type of (typically non-linear) model 

that establishes a set of interconnected functional relationships between input stimuli and 

desired output where the parameters of the functional relationship need to be adjusted for 

optimal performance. Besides supervised networks, other types such as reinforcement 

learning [13] have been proposed. Some of the conventional numerical techniques used 

for data-driven prognostics include wavelets [7], [14], Kalman filters [4] , particle filters 

[15],[17] regression [18], demodulation [19], and statistical methods [20]. Another 

popular technique that is used for prognostics is fuzzy logic [21],[22]. Fuzzy logic 

provides a language (with syntax and local semantics) into which one can translate 

qualitative knowledge about the problem to be solved. The fuzzy reasoning mechanism 

has powerful interpolation properties that in turn give fuzzy logic a remarkable 

robustness with respect to variations in the system's parameters, disturbances, etc. 

 

A core issue encountered in making a meaningful prediction is to account for and 

subsequently bound various kinds of uncertainties arising from different sources like 

process noise, measurement noise, inaccurate process models, etc. in the whole exercise.  

Long-term prediction of the time to failure entails large-grain uncertainty that must be 

represented effectively and managed efficiently. For example, as more information about 

past damage propagation and about future use becomes available, means must be devised 

to narrow the uncertainty bounds. Prognostic performance metrics should take the width 

of the uncertainty bounds into account. Therefore, it is critical to choose methods that can 

take care of these issues in addition to providing damage trajectories. In [6], the authors 

introduced a confidence prediction neural network that employs confidence distribution 

nodes based on Parzen estimates to represent uncertainty. The learning algorithm is 

implemented as a lazy or Q-learning routine that improves uncertainty of online 

prognostics estimates over time. Not all data-driven techniques can be expected to 

inherently handle these issues and thus must be combined with other methods suited for 

uncertainty management. Some such techniques used for dealing with uncertainty include 

Dempster-Shafer theory [23] or using a Bayesian framework with relevance vector 

machines combined with particle filters [24]. In another effort to reduce uncertainty, the 

concept of prognostic fusion has been introduced, [25], [26] Here, similar to multiple 
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classifier fusion, the output from several different prognostic algorithms is fused such 

that the resulting output is more accurate and has tighter uncertainty bounds than on 

average the output of any individual algorithm alone. In this paper we have not addressed 

this issue directly, but our choice of RVM and GPR algorithms is driven by this 

requirement which have been shown to possess uncertainty handling capabilities.  

 

In the next section we discuss the three techniques we chose to compare followed by the 

methodology specific to the dataset we used for this study. 

 

III. METHODS 

The choice for the algorithms was motivated largely by the desire to benchmark typical 

algorithms upon which the assessment of further algorithms will be based. Generally, the 

neural net approach stands out by its relative simplicity by which it can approximate 

coefficients of an exponential damage propagation function in response to different 

operational stimuli. In contrast, RVM and GPR stand out by providing uncertainty 

estimates with the prediction. We will briefly discuss these techniques in this paper and 

focus more on the application approach and results from this study. The reader is 

encouraged to follow references for deeper details. 

 

Neural Networks: 
For the NN-based approach, we employ here the strategy where we learn the damage 

state as an intermediate step. To that end, data were first transformed into log space, 

where damage propagation was observed to be linear [23]. Then, the rate of change for 

operational settings could be learned such that the states for which there were no 

supporting experimental data were covered by a smooth curve, employing a network with 

low complexity (2-4-1) to avoid overfitting [23]. The network was tasked to learn the 

damage propagation rate based on operational conditions which were given by two 

features. Data were preprocessed to remove bias. The results were smoothed to deal with 

large non-monotonicities.  

 

For RUL calculation, the rate of damage change was retrieved from the NN model and 

damage was calculated using an exponential damage propagation equation: 
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The damage was then iteratively calculated until the damage threshold was reached and 

the associated time at the threshold tth was recorded. RUL was calculated by subtracting 

the current time t0 from tth. 

0ttRUL th −=          (2) 

 

Fig. 1 shows the damage rate curve that the NN learns as a function of the operational 

conditions. 
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Fig. 1 - Fitted curve for damage rates as a function of operational conditions 

 

Relevance Vector Machine 

The Relevance Vector Machine (RVM) [27] is a Bayesian form representing a 

generalized linear model of identical functional form of the Support Vector Machine 

(SVM) [28]. Although, SVM is a state-of-the-art technique for classification and 

regression, it suffers from a number of disadvantages, one of which is the lack of 

probabilistic outputs that make more sense in health monitoring applications. The RVM 

attempts to address these very issues in a Bayesian framework. Besides the probabilistic 

interpretation of its output, it uses a lot fewer kernel functions for comparable 

generalization performance. 

 

This type of supervised machine learning starts with a set of input vectors {xn}, n = 1,…, 

N, and their corresponding targets {tn}. The aim is to learn a model of the dependency of 

the targets on the inputs in order to make accurate predictions of t for unseen values of x. 

Typically, the predictions are based on some function F(x) defined over the input space, 

and learning is the process of inferring the parameters of this function. The targets are 

assumed to be samples from the model with additive noise: 

( ) nnn F ε+= wxt ;                    (3) 

where, εn are independent samples from some noise process (Gaussian with mean 0 and 

variance σ
2
). Assuming the independence of tn, the likelihood of the complete data set can 

be written as: 
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where, w = (w1, w2,…, wM)
T
 is a weight vector and Φ is the N x (N+1) design matrix with 

Φ = [ )( 1tφ , )( 2tφ ,…, )( Ntφ ]
T
; in which )( Ntφ  = [1, K(xn,x1),K(xn,x2),…,K(xn,xN)]

T
, 

K(x,xi) being a kernel function.   

 

To prevent over-fitting a preference for smoother functions is encoded by choosing a 

zero-mean Gaussian prior distribution over w parameterized by the hyperparameter 
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vector η. To complete the specification of this hierarchical prior, the hyperpriors over η 

and the noise variance σ
2
 are approximated as delta functions at their most probable 

values ηMP and σ
2
MP. Predictions for new data are then made according to: 

 ∫= .),,|(),|*()|*( 22 wtwwttt dppp MPMPMP σησ     (5) 

 

Gaussian Process Regression 

A Gaussian Process (GP) is a collection of random variables any finite number of which 

have a joint Gaussian distribution. A real GP f(x) is completely specified by its mean 

function m(x) and co-variance function k(x,x’) defined as: 
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The index set ℜ∈X  is the set of possible inputs, which need not necessarily be a time 

vector. Given prior information about the GP and a set of training 

points },...,1|),{( nifx ii = , the posterior distribution over functions is derived by 

imposing a restriction on prior joint distribution to contain only those functions that agree 

with the observed data points [29]. These functions can be assumed to be noisy as in real 

world situations we have access to only noisy observations rather than exact function 

values, i.e. ε+= )(xfyi , where ε  is additive IID N(0, 2

nσ ). Once we have a posterior 

distribution it can be used to assess predictive values for the test data points. Following 

equations describe the predictive distribution for GPR [30]. 
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A crucial ingredient in a Gaussian process predictor is the covariance function 

( )',( XXK ) that encodes the assumptions about the functions to be learnt by defining the 

relationship between data points. GPR requires a prior knowledge about the form of 

covariance function, which must be derived from the context if possible. Furthermore, 

covariance functions consist of various hyper-parameters that define their properties. 

Setting right values of such hyper-parameters is yet another challenge in learning the 

desired functions. Although the choice of covariance function must be specified by the 

user, corresponding hyper-parameters can be learned from the training data using a 

gradient based optimizer such as maximizing the marginal likelihood of the observed data 

with respect to hyper-parameters [31]. After a simple description of GPR we now 

describe the methodology we followed for the challenge dataset. 

 

IV. DATA 

The challenge dataset contains a set of time series data from experiments running from no 

fault to some time after the fault. The data was obtained on a test stand involving rotating 

equipment in an aerospace setting. Several but not all experiments trip the failure 
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threshold (set here at 45 units). In some experiments the equipment keeps operating after 

the failure criterion has been reached. Damage was measured for each run several times, 

once shortly after fault initiation and several times afterwards. There are only few 

measurements because it was very costly and impractical to obtain measurements. 

Different but constant, during a run, operational and environmental conditions were used 

for the training sets, except where the experiments were interrupted for taking ground 

truth measurement. In contrast, the set used for testing was subjected to varying 

conditions (cyclic loading). 

 

This work does not consider anomaly detection or diagnostics and instead focuses on the 

prognostic aspects. The data also includes a diagnostics flag that indicates absence or 

presence of the fault. Perfect diagnostics is assumed and is used to trigger prognostics 

whenever diagnostic flag turns true. While this is an unrealistic assumption, it does not 

significantly affect this study. The primary challenges encountered arise from training 

with sparse damage measurements. Interpolation between the measurements or a curve fit 

performed on the set of measurements does not take into account that damage 

propagation is not necessarily a smooth process and can occur in non-linear increments. 

Another major issue is the extremely noisy nature of the data. 

 

We are posed with two requirements before we can make predictions. First, we must 

estimate the current state of the system and second, we need to estimate the damage 

accumulation from there on till the failure condition is met. Features are expected to be 

good indicators of the damage level. The operational conditions (e.g. system loading) are 

expected to affect the extent of damage accumulation.  Keeping these requirements in 

mind for the challenge data set, we used our algorithms to learn two relationships. We 

made an assumption about the form of the damage growth model being exponential in 

nature i.e., { }CtD +⋅= λexp . First, we chose to exclude cases for training where ground 

truth data was either missing, consisted of less than 3 data points, or did not follow 

monotonically growing characteristics. We, then fit an exponential curve to the damage 

ground truth data for that subset of cases, and assess the values of parameters λ and C for 

each case. This provides a regression model to compute damage progression rate for any 

set of operational conditions. Next, we established a relationship between the feature 

values and the extent of damage based on all ground truth data available from the training 

set. The model thus learnt was used to estimate the current state of the damage based on 

feature values available at the time. Since the feature data was extremely noisy we used a 

simple moving average filter with window size ten to smooth any sharp variations.  

 

After describing the data preprocessing and application approach we report our findings 

from this study in the following section. 

 

V. RESULTS 

The results of the algorithm indicate that all algorithms can in principle come up with 

remaining life estimation although the actual remaining life estimates vary considerably. 

Figure 2 shows prediction trajectories obtained from all the three algorithms. As can be 

seen in the figure, all the algorithms start predictions from different damage levels. This 

is because we let these algorithms use their own respective estimates of the current 
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damage level at the time of prediction. One can observe similar trends for all algorithms 

with some variation in the local slopes. Two of the algorithms come up with late 

predictions as the time approaches closer to failure whereas the RVM does not produce 

late predictions. It must be noted that from safety point of view making conservative 

predictions is often times preferred over making late predictions. The superimposed 

prediction of the three algorithms is shown at times t=3750, t=4250, t=4750, and t=5250 

that have a true remaining life of 1637, 1137, 637, and 137 time units. The numerical 

results are summarized in Table I. 
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Figure 2 - Damage prediction trajectory of the 3 algorithms at different times using a 

algorithm specific damage estimates 

 

Table I – Results with different damage estimation 

 

 

 

 

 

 

 

 

Current state estimation accuracy is a function of diagnostic capability of an algorithm. In 

this work we did not focus on optimizing the damage estimation nor did we evaluate 

which algorithm provides the best damage level estimates. Instead, the focus of this paper 

is to evaluate the prognostic capabilities of these algorithms. To provide a better 

comparison of the algorithms, we deployed them using the same starting damage levels. 

RUL NN Error RVM 

Error 

GPR 

Error 

1637 337 207 201 

1137 227 117 17 

637 77 17 -83 

137 -283 17 -83 



 - 8 - 

We chose the damage level estimates provided by GPR algorithm as a common initial 

point. We chose Matérn class covariance function with ν parameter 3/2 which translates 

into a product of an exponential and a first order polynomial covariance function. The 

results have been summarized in Figure 3 and Table II. In this case the RVM algorithm 

also results in late predictions. 
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Figure 3 – Damage prediction trajectory of the 3 algorithms at different times using a 

common damage estimate 

 

Table II- Results with common damage estimation 

 

 

 

 

 

 

 

 

One issue encountered when the estimated time of failure is later than the actual time of 

failure is what operational conditions to use since only the operational conditions up to 

actual failure exist. We assumed here that the conditions would be repeated using the 

same cycles as up to failure. Clearly, the error will change based on what operational 

conditions are being chosen. 

 

RUL NN Error RVM 

Error 

GPR 

Error 

1637 367 37 201 

1137 177 -13 17 

637 -103 -43 -83 

137 -203 -43 -83 
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VI. DISCUSSIONS 

Generally, the prediction accuracy seems acceptable. The (somewhat arbitrary) metric 

that the accuracy of the prediction performed halfway between first fault detection and 

actual failure should be within 20% of the actual remaining life is met by all three 

algorithms. However, this metric does not account the prediction accuracy at later times. 

Indeed, performance at other times varies considerably. Generally, one would expect that 

the prediction error becomes smaller the closer one gets to the actual end-of-life. Yet, that 

is only true for the RVM when it uses its own customized damage estimates. Moreover, 

all three algorithms predict late as the as the remaining useful life gets smaller when 

using the common damage estimation. This is clearly in part a function of the damage 

state estimation. Figure 4 shows the predictions using the GPR as an example of how the 

damage level estimates impacts the prediction quality. What is apparent is that the 

damage degree estimate does not monotonically increase, which accounts for a large 

degree of the variation of the remaining life estimation. Superimposed are also the ground 

truth measurements which one would not typically have in a fielded system. The possible 

explanation that the damage progression does not follow the same model as during the 

earlier time should not distract from the lack of a metric that (besides accuracy) quantifies 

the prediction qualities over time. Indeed, while data-driven techniques may generally be 

considered an attractive alternative for prognostics in situations where models are hard to 

come by, unstable prediction results can occur due to sensitivity to state estimation (for 

the NN-based approach) or due to sensitivity to training data coherence (for the RVM-

based approach).  

 

The intrinsic ability of RVM and GPR to fit probability distribution functions (pdfs) to 

the data is desirable for prognostics where uncertainty management is of paramount 

importance. What remains is a validation that the uncertainty estimates are in fact 

reasonable. A more formal approach for uncertainty management that gives an upper 

bound for the confidence would be desirable. In addition, we note here again the need for 

a metric that describes the quality of the uncertainty properties. 

 

The limitations of the NN are rooted in the tradeoff between providing a smooth curve 

for damage rate parameters that can be obtained from the training data: If the training 

data, as was the case here, exhibit trajectories that do not support that model, it is hard to 

eliminate those trajectories when only few training data exist and without using some 

knowledge about the underlying physics. Consequently, the NN performance varies 

primarily with the choice of training data and of course also with the design of its 

architecture.  
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Figure 4 – RUL predictions using GPR 

 

While GPR provides a theoretically sound framework for prediction tasks it has some 

limitations in its use as well. As mentioned earlier, choosing a correct covariance 

function is critical because it encodes our assumption of inter-relationships within data. 

While there are several covariance functions available from the literature [29], it is 

sometimes difficult make a choice in absence of any knowledge about the actual process 

that governs the system. Although methods have been suggested to evaluate various 

covariance functions based on likelihood values, the task is reduced to pick the best out 

of available ones but still does not guarantee that our assumptions about the process were 

correct. 

 

GPR provides variance around its mean predictions. The premise is that it computes 

posterior by constraining the prior to fit the available training data. Therefore, any 

prediction points lying close to training data in the input space are often predicted fairly 

accurately and with high confidence (small variance). For the regions where training data 

was not sufficiently available GPR may still predict the mean functions fairly well, 

assuming a suitable covariance function was identified and hyper-parameters were 

reasonably set. However, the confidence bound it provides tend to be extremely 

conservative (large variance). Whereas this may not be very counter-intuitive for 

predictions involving a long time horizon these bounds get unmanageable unless 

somehow contained. 
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Another limitation arises from the fact that GPR scales typically as O(n
3
) with the 

increasing number of training examples. In our application this did not pose a problem as 

we had a small training data set however, it may be a limitation in terms of computational 

time and power in an online prognosis type of application. Various methods have been 

suggested for approximating the computations to reduce the problem but it can get tricky 

as data size increases and prediction horizon shrinks. 

 

In the case of the RVM, its power to detect underlying trends in noisy data lies in its 

ability to use probabilistic kernels to account for the inherent uncertainties in the 

application domain. However, this advantage can also be a drawback if there are 

insufficient points in the training dataset or if the test dataset is unknown or significantly 

different such that a validation of the RVM performance on the training data has little 

bearing on its performance in the test case. Figure 5 shows difference in performance of 

the RVM in estimating the damage level from the feature values in the test dataset, 

having trained on selected datasets with different kernel widths. The plot on the left 

shows that all the widths do well on the training sets while their performances differ 

widely on the test case, with 7 being the optimal width value. Thus, it is difficult to come 

up with a strategy to select kernel width without any knowledge of the test case data. 
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Figure 5 – Impact of kernel width on damage mapping for regression and prediction 

 

VII. CONCLUSIONS 

In this paper we have compared three regression techniques used as data driven 

prognostic algorithms. We have shown that while these algorithms can learn the 

dynamics of the process from sparse and noisy data fairly well, the RUL estimates 

depend significantly on the current state estimation. Each of the algorithms came up with 

its own estimates which were not close to each other. Clearly, the methods suffered from 

the low signal to noise ratio as well as the small number of training data. In particular the 

latter is often times a constraint that will be experienced by many systems since run-to-

failure data – in particular for new systems - is hard to come by. Future work should 

investigate methods for dealing with sparse time series data sets, research formal methods 

for validation of data-driven approaches, and investigate fusion of prognostic estimates, 
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including concepts of estimator diversity. Additionally, as part of our future 

investigations, we would like to employ techniques better suited for state estimation and 

then use those estimates as initial points for such prediction algorithms. In addition, this 

work made clear that there is a need for prognostic metrics that can comprehensively 

quantify performance beyond accuracy and precision. Specifically, metrics that take into 

account the prediction horizon length, sensitivity to damage state estimation, modality of 

confidence distribution, preference distribution around actual time of failure, and 

stability/robustness of the prediction (among others) would be desirable. 
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